Remove Data Integration Remove Machine Learning Remove Metadata
article thumbnail

Deep automation in machine learning

O'Reilly on Data

We need to do more than automate model building with autoML; we need to automate tasks at every stage of the data pipeline. In a previous post , we talked about applications of machine learning (ML) to software development, which included a tour through sample tools in data science and for managing data infrastructure.

article thumbnail

Becoming a machine learning company means investing in foundational technologies

O'Reilly on Data

Companies successfully adopt machine learning either by building on existing data products and services, or by modernizing existing models and algorithms. In this post, I share slides and notes from a keynote I gave at the Strata Data Conference in London earlier this year. Use ML to unlock new data types—e.g.,

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With the growing emphasis on data, organizations are constantly seeking more efficient and agile ways to integrate their data, especially from a wide variety of applications. We take care of the ETL for you by automating the creation and management of data replication. Glue ETL offers customer-managed data ingestion.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

The following requirements were essential to decide for adopting a modern data mesh architecture: Domain-oriented ownership and data-as-a-product : EUROGATE aims to: Enable scalable and straightforward data sharing across organizational boundaries. Eliminate centralized bottlenecks and complex data pipelines.

IoT 111
article thumbnail

How companies are building sustainable AI and ML initiatives

O'Reilly on Data

In 2017, we published “ How Companies Are Putting AI to Work Through Deep Learning ,” a report based on a survey we ran aiming to help leaders better understand how organizations are applying AI through deep learning. We found companies were planning to use deep learning over the next 12-18 months.

article thumbnail

Are You Content with Your Organization’s Content Strategy?

Rocket-Powered Data Science

This is accomplished through tags, annotations, and metadata (TAM). My favorite approach to TAM creation and to modern data management in general is AI and machine learning (ML). Smart content includes labeled (tagged, annotated) metadata (TAM). Tagging and annotating those subcomponents and subsets (i.e.,

Strategy 267
article thumbnail

Build a high-performance quant research platform with Apache Iceberg

AWS Big Data

Iceberg offers distinct advantages through its metadata layer over Parquet, such as improved data management, performance optimization, and integration with various query engines. Unlike direct Amazon S3 access, Iceberg supports these operations on petabyte-scale data lakes without requiring complex custom code.

Metadata 111