article thumbnail

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

AWS Big Data

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake ( Apache Iceberg ) using AWS Glue. To start the job, choose Run. format(dbname)).config("spark.sql.catalog.glue_catalog.catalog-impl",

Data Lake 105
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. Open AWS Glue Studio. Choose ETL Jobs.

Data Lake 122
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Important Considerations When Migrating to a Data Lake

Smart Data Collective

Azure Data Lake Storage Gen2 is based on Azure Blob storage and offers a suite of big data analytics features. If you don’t understand the concept, you might want to check out our previous article on the difference between data lakes and data warehouses. Determine your preparedness.

Data Lake 113
article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

Use cases for Hive metastore federation for Amazon EMR Hive metastore federation for Amazon EMR is applicable to the following use cases: Governance of Amazon EMR-based data lakes – Producers generate data within their AWS accounts using an Amazon EMR-based data lake supported by EMRFS on Amazon Simple Storage Service (Amazon S3)and HBase.

Data Lake 113
article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

For many organizations, this centralized data store follows a data lake architecture. Although data lakes provide a centralized repository, making sense of this data and extracting valuable insights can be challenging. About the Authors Dave Horne is a Sr.

Data Lake 113
article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 122
article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.