Remove Data Lake Remove Data Processing Remove Data Transformation
article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.

article thumbnail

Modernize your ETL platform with AWS Glue Studio: A case study from BMS

AWS Big Data

In addition to using native managed AWS services that BMS didn’t need to worry about upgrading, BMS was looking to offer an ETL service to non-technical business users that could visually compose data transformation workflows and seamlessly run them on the AWS Glue Apache Spark-based serverless data integration engine.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

Amazon Redshift , a warehousing service, offers a variety of options for ingesting data from diverse sources into its high-performance, scalable environment. This native feature of Amazon Redshift uses massive parallel processing (MPP) to load objects directly from data sources into Redshift tables.

IoT 102
article thumbnail

Use AWS Glue to streamline SFTP data processing

AWS Big Data

With AWS Glue, you can discover and connect to hundreds of diverse data sources and manage your data in a centralized data catalog. It enables you to visually create, run, and monitor extract, transform, and load (ETL) pipelines to load data into your data lakes. Choose Store a new secret.

article thumbnail

Unlock scalable analytics with a secure connectivity pattern in AWS Glue to read from or write to Snowflake

AWS Big Data

This involves creating VPC endpoints in both the AWS and Snowflake VPCs, making sure data transfer remains within the AWS network. Use Amazon Route 53 to create a private hosted zone that resolves the Snowflake endpoint within your VPC. Refer to Editing AWS Glue managed data transform nodes for more information.

Analytics 101
article thumbnail

Build incremental data pipelines to load transactional data changes using AWS DMS, Delta 2.0, and Amazon EMR Serverless

AWS Big Data

Building data lakes from continuously changing transactional data of databases and keeping data lakes up to date is a complex task and can be an operational challenge. You can then apply transformations and store data in Delta format for managing inserts, updates, and deletes.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. Data engineers are crucial for schema conversion and data transformation, and DBAs can handle cluster configuration and workload monitoring. Platform architects define a well-architected platform.