Remove Data Lake Remove Data Processing Remove Data Warehouse
article thumbnail

Important Considerations When Migrating to a Data Lake

Smart Data Collective

Azure Data Lake Storage Gen2 is based on Azure Blob storage and offers a suite of big data analytics features. If you don’t understand the concept, you might want to check out our previous article on the difference between data lakes and data warehouses. Determine your preparedness.

Data Lake 113
article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

One of the key challenges in modern big data management is facilitating efficient data sharing and access control across multiple EMR clusters. Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated. Test access using SageMaker Studio in the consumer account.

Data Lake 113
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 122
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises.

article thumbnail

Accelerate your data warehouse migration to Amazon Redshift – Part 7

AWS Big Data

With Amazon Redshift, you can use standard SQL to query data across your data warehouse, operational data stores, and data lake. Migrating a data warehouse can be complex. You have to migrate terabytes or petabytes of data from your legacy system while not disrupting your production workload.

article thumbnail

Automate deployment of an Amazon QuickSight analysis connecting to an Amazon Redshift data warehouse with an AWS CloudFormation template

AWS Big Data

Amazon Redshift is the most widely used data warehouse in the cloud, best suited for analyzing exabytes of data and running complex analytical queries. Amazon QuickSight is a fast business analytics service to build visualizations, perform ad hoc analysis, and quickly get business insights from your data.

article thumbnail

Unlocking Data Storage: The Traditional Data Warehouse vs. Cloud Data Warehouse

Sisense

Data warehouse vs. databases Traditional vs. Cloud Explained Cloud data warehouses in your data stack A data-driven future powered by the cloud. We live in a world of data: There’s more of it than ever before, in a ceaselessly expanding array of forms and locations. Data warehouse vs. databases.