Remove Data Lake Remove Data Processing Remove Data Warehouse
article thumbnail

Oracle Wants to Be the Database for AI

David Menninger's Analyst Perspectives

Oracle recently hosted its annual Database Analyst Summit, sharing the vision and strategy for its data platform. While much of the event was under non-disclosure as product plans and launch schedules are finalized, it still served as a useful recap of the broad portfolio of data platform capabilities that Oracle has to offer.

Data Lake 130
article thumbnail

Important Considerations When Migrating to a Data Lake

Smart Data Collective

Azure Data Lake Storage Gen2 is based on Azure Blob storage and offers a suite of big data analytics features. If you don’t understand the concept, you might want to check out our previous article on the difference between data lakes and data warehouses. Determine your preparedness.

Data Lake 116
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

One of the key challenges in modern big data management is facilitating efficient data sharing and access control across multiple EMR clusters. Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated. Test access using SageMaker Studio in the consumer account.

Data Lake 117
article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 121
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises.

article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

You can now generate data integration jobs for various data sources and destinations, including Amazon Simple Storage Service (Amazon S3) data lakes with popular file formats like CSV, JSON, and Parquet, as well as modern table formats such as Apache Hudi , Delta , and Apache Iceberg.

article thumbnail

Accelerate your data warehouse migration to Amazon Redshift – Part 7

AWS Big Data

With Amazon Redshift, you can use standard SQL to query data across your data warehouse, operational data stores, and data lake. Migrating a data warehouse can be complex. You have to migrate terabytes or petabytes of data from your legacy system while not disrupting your production workload.