Remove Data Lake Remove Data Processing Remove Download
article thumbnail

Expanding data analysis and visualization options: Amazon DataZone now integrates with Tableau, Power BI, and more

AWS Big Data

Amazon DataZone now launched authentication supports through the Amazon Athena JDBC driver, allowing data users to seamlessly query their subscribed data lake assets via popular business intelligence (BI) and analytics tools like Tableau, Power BI, Excel, SQL Workbench, DBeaver, and more.

article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

For many organizations, this centralized data store follows a data lake architecture. Although data lakes provide a centralized repository, making sense of this data and extracting valuable insights can be challenging. Process the file to extract or convert the text content.

Data Lake 115
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

Use cases for Hive metastore federation for Amazon EMR Hive metastore federation for Amazon EMR is applicable to the following use cases: Governance of Amazon EMR-based data lakes – Producers generate data within their AWS accounts using an Amazon EMR-based data lake supported by EMRFS on Amazon Simple Storage Service (Amazon S3)and HBase.

Data Lake 116
article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 122
article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

On your project, in the navigation pane, choose Data. For Add data source , choose Add connection. For Host , enter your host name of your Aurora PostgreSQL database cluster. format(connection_properties["HOST"],connection_properties["PORT"],connection_properties["DATABASE"]) df.write.format("jdbc").option("url",

article thumbnail

Build a data lake with Apache Flink on Amazon EMR

AWS Big Data

Verify all table metadata is stored in the AWS Glue Data Catalog. Consume data with Athena or Amazon EMR Trino for business analysis. Update and delete source records in Amazon RDS for MySQL and validate the reflection of the data lake tables. the Flink table API/SQL can integrate with the AWS Glue Data Catalog.

article thumbnail

Query your Apache Hive metastore with AWS Lake Formation permissions

AWS Big Data

The Hive metastore is a repository of metadata about the SQL tables, such as database names, table names, schema, serialization and deserialization information, data location, and partition details of each table. Therefore, organizations have come to host huge volumes of metadata of their structured datasets in the Hive metastore.