Remove Data Lake Remove Data Processing Remove Enterprise
article thumbnail

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

AWS Big Data

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake ( Apache Iceberg ) using AWS Glue. To start the job, choose Run. format(dbname)).config("spark.sql.catalog.glue_catalog.catalog-impl",

Data Lake 101
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.

Data Lake 116
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Expanding data analysis and visualization options: Amazon DataZone now integrates with Tableau, Power BI, and more

AWS Big Data

Amazon DataZone now launched authentication supports through the Amazon Athena JDBC driver, allowing data users to seamlessly query their subscribed data lake assets via popular business intelligence (BI) and analytics tools like Tableau, Power BI, Excel, SQL Workbench, DBeaver, and more.

article thumbnail

Eight Top DataOps Trends for 2022

DataKitchen

DataOps adoption continues to expand as a perfect storm of social, economic, and technological factors drive enterprises to invest in process-driven innovation. As a result, enterprises will examine their end-to-end data operations and analytics creation workflows. Data Gets Meshier. Hub-Spoke Enterprise Architectures.

Testing 245
article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 116
article thumbnail

Demystify data sharing and collaboration patterns on AWS: Choosing the right tool for the job

AWS Big Data

Data is the most significant asset of any organization. However, enterprises often encounter challenges with data silos, insufficient access controls, poor governance, and quality issues. Embracing data as a product is the key to address these challenges and foster a data-driven culture.

Sales 105
article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

For many organizations, this centralized data store follows a data lake architecture. Although data lakes provide a centralized repository, making sense of this data and extracting valuable insights can be challenging.

Data Lake 101