Remove Data Lake Remove Data Processing Remove IT
article thumbnail

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

AWS Big Data

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake ( Apache Iceberg ) using AWS Glue. To start the job, choose Run. format(dbname)).config("spark.sql.catalog.glue_catalog.catalog-impl",

Data Lake 104
article thumbnail

Oracle Wants to Be the Database for AI

David Menninger's Analyst Perspectives

Oracle recently hosted its annual Database Analyst Summit, sharing the vision and strategy for its data platform. While much of the event was under non-disclosure as product plans and launch schedules are finalized, it still served as a useful recap of the broad portfolio of data platform capabilities that Oracle has to offer.

Data Lake 130
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Important Considerations When Migrating to a Data Lake

Smart Data Collective

Azure Data Lake Storage Gen2 is based on Azure Blob storage and offers a suite of big data analytics features. If you don’t understand the concept, you might want to check out our previous article on the difference between data lakes and data warehouses. Migrate data, workloads, and applications.

Data Lake 116
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. Open AWS Glue Studio. Choose ETL Jobs.

Data Lake 120
article thumbnail

How BMW streamlined data access using AWS Lake Formation fine-grained access control

AWS Big Data

With over 10 PB of data across 1,500 data assets, 1,000 data use cases, and more than 9000 users, the BMW CDH has become a resounding success since BMW decided to build it in a strategic collaboration with Amazon Web Services (AWS) in 2020. This led to inefficiencies in data governance and access control.

Data Lake 106
article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

Use cases for Hive metastore federation for Amazon EMR Hive metastore federation for Amazon EMR is applicable to the following use cases: Governance of Amazon EMR-based data lakes – Producers generate data within their AWS accounts using an Amazon EMR-based data lake supported by EMRFS on Amazon Simple Storage Service (Amazon S3)and HBase.

Data Lake 114
article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

For many organizations, this centralized data store follows a data lake architecture. Although data lakes provide a centralized repository, making sense of this data and extracting valuable insights can be challenging. Let’s walk through the architecture chronologically for a closer look at each step.

Data Lake 113