This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A datalake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.
Cloudera’s Data Warehouse service allows raw data to be stored in the cloud storage of your choice (S3, ADLSg2). It will be stored in your own namespace, and not force you to move data into someone else’s proprietary file formats or hosted storage. Proprietary file formats mean no one else is invited in! Separate compute.
With real-time streaming data, organizations can reimagine what’s possible. From enabling predictive maintenance in manufacturing to delivering hyper-personalized content in the media and entertainment industry, and from real-time fraud detection in finance to precision agriculture in farming, the potential applications are vast.
The workflow contains the following steps: Data is saved by the producer in their own Amazon Simple Storage Service (Amazon S3) buckets. Data source locations hosted by the producer are created within the producer’s AWS Glue Data Catalog. Data source locations are registered with Lake Formation.
Set up a custom domain with Amazon Redshift in the primary Region In the hosted zone that Route 53 created when you registered the domain, create records to tell Route 53 how you want to route traffic to Redshift endpoint by completing the following steps: On the Route 53 console, choose Hosted zones in the navigation pane.
Inability to maintain context – This is the worst of them all because every time a data set or workload is re-used, you must recreate its context including security, metadata, and governance. Cloud deployments add tremendous overhead because you must reimplement security measures and then manage, audit, and control them.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content