Remove Data Lake Remove Data Processing Remove Structured Data
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

cycle_end"', "sagemakedatalakeenvironment_sub_db", ctas_approach=False) A similar approach is used to connect to shared data from Amazon Redshift, which is also shared using Amazon DataZone. The applications are hosted in dedicated AWS accounts and require a BI dashboard and reporting services based on Tableau.

IoT 100
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building and Evaluating GenAI Knowledge Management Systems using Ollama, Trulens and Cloudera

Cloudera

In modern enterprises, the exponential growth of data means organizational knowledge is distributed across multiple formats, ranging from structured data stores such as data warehouses to multi-format data stores like data lakes. This contextualization is possible thanks to RAG.

article thumbnail

Migrate Hive data from CDH to CDP public cloud

Cloudera

Using easy-to-define policies, Replication Manager solves one of the biggest barriers for the customers in their cloud adoption journey by allowing them to move both tables/structured data and files/unstructured data to the CDP cloud of their choice easily. CDP Data Lake cluster versions – CM 7.4.0,

article thumbnail

How smava makes loans transparent and affordable using Amazon Redshift Serverless

AWS Big Data

To bring their customers the best deals and user experience, smava follows the modern data architecture principles with a data lake as a scalable, durable data store and purpose-built data stores for analytical processing and data consumption.

Data Lake 103
article thumbnail

Enhance query performance using AWS Glue Data Catalog column-level statistics

AWS Big Data

Data lakes are designed for storing vast amounts of raw, unstructured, or semi-structured data at a low cost, and organizations share those datasets across multiple departments and teams. The queries on these large datasets read vast amounts of data and can perform complex join operations on multiple datasets.

article thumbnail

Capital Group invests big in talent development

CIO Business Intelligence

The program hosts regular meetings and get-togethers for cohorts so they can check in on their skills and career development and even connect with leaders through an ongoing speaker series. The bootcamp broadened my understanding of key concepts in data engineering. Investing in future leaders.