Remove Data Lake Remove Data Quality Remove Interactive
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Using Athena and the dbt adapter, you can transform raw data in Amazon S3 into well-structured tables suitable for analytics.

Data Lake 103
article thumbnail

AWS Glue Data Quality is Generally Available

AWS Big Data

We are excited to announce the General Availability of AWS Glue Data Quality. Our journey started by working backward from our customers who create, manage, and operate data lakes and data warehouses for analytics and machine learning. It takes days for data engineers to identify and implement data quality rules.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Visualize data quality scores and metrics generated by AWS Glue Data Quality

AWS Big Data

AWS Glue Data Quality allows you to measure and monitor the quality of data in your data repositories. It’s important for business users to be able to see quality scores and metrics to make confident business decisions and debug data quality issues. An AWS Glue crawler crawls the results.

article thumbnail

What is a Data Mesh?

DataKitchen

First-generation – expensive, proprietary enterprise data warehouse and business intelligence platforms maintained by a specialized team drowning in technical debt. Second-generation – gigantic, complex data lake maintained by a specialized team drowning in technical debt.

article thumbnail

Data Lakes: What Are They and Who Needs Them?

Jet Global

To address the flood of data and the needs of enterprise businesses to store, sort, and analyze that data, a new storage solution has evolved: the data lake. What’s in a Data Lake? Data warehouses do a great job of standardizing data from disparate sources for analysis. Taking a Dip.

article thumbnail

Manage concurrent write conflicts in Apache Iceberg on the AWS Glue Data Catalog

AWS Big Data

In modern data architectures, Apache Iceberg has emerged as a popular table format for data lakes, offering key features including ACID transactions and concurrent write support. We show two example scripts demonstrating a practical implementation of error handling for data conflicts in Iceberg streaming jobs.

Snapshot 137
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 126