Remove Data Lake Remove Data Quality Remove Testing
article thumbnail

Drug Launch Case Study: Amazing Efficiency Using DataOps

DataKitchen

data engineers delivered over 100 lines of code and 1.5 data quality tests every day to support a cast of analysts and customers. They opted for Snowflake, a cloud-native data platform ideal for SQL-based analysis. It is necessary to have more than a data lake and a database.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Using Athena and the dbt adapter, you can transform raw data in Amazon S3 into well-structured tables suitable for analytics.

Data Lake 103
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Quality Power Moves: Scorecards & Data Checks for Organizational Impact

DataKitchen

A DataOps Approach to Data Quality The Growing Complexity of Data Quality Data quality issues are widespread, affecting organizations across industries, from manufacturing to healthcare and financial services. 73% of data practitioners do not trust their data (IDC).

Scorecard 177
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Yet, despite growing investments in advanced analytics and AI, organizations continue to grapple with a persistent and often underestimated challenge: poor data quality.

article thumbnail

Perform data parity at scale for data modernization programs using AWS Glue Data Quality

AWS Big Data

Today, customers are embarking on data modernization programs by migrating on-premises data warehouses and data lakes to the AWS Cloud to take advantage of the scale and advanced analytical capabilities of the cloud. Some customers build custom in-house data parity frameworks to validate data during migration.

article thumbnail

Automated data governance with AWS Glue Data Quality, sensitive data detection, and AWS Lake Formation

AWS Big Data

Data governance is the process of ensuring the integrity, availability, usability, and security of an organization’s data. Due to the volume, velocity, and variety of data being ingested in data lakes, it can get challenging to develop and maintain policies and procedures to ensure data governance at scale for your data lake.

article thumbnail

Fire Your Super-Smart Data Consultants with DataOps

DataKitchen

Ensuring that data is available, secure, correct, and fit for purpose is neither simple nor cheap. Companies end up paying outside consultants enormous fees while still having to suffer the effects of poor data quality and lengthy cycle time. . When a job is automated, there is little advantage to outsourcing. .