This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Together, these capabilities enable terminal operators to enhance efficiency and competitiveness in an industry that is increasingly datadriven.
Back by popular demand, we’ve updated our data nerd Gift Giving Guide to cap off 2021. We’ve kept some classics and added some new titles that are sure to put a smile on your data nerd’s face. Fail Fast, Learn Faster: Lessons in Data-Driven Leadership in an Age of Disruption, Big Data, and AI, by Randy Bean.
Enterprises and organizations across the globe want to harness the power of data to make better decisions by putting data at the center of every decision-making process. However, throughout history, data services have held dominion over their customers’ data.
As with many burgeoning fields and disciplines, we don’t yet have a shared canonical infrastructure stack or best practices for developing and deploying data-intensive applications. Why: Data Makes It Different. Not only is data larger, but models—deep learning models in particular—are much larger than before.
Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon Simple Storage Service (Amazon S3) and data sources residing in AWS, on-premises, or other cloud systems using SQL or Python. Solution overview Data scientists are generally accustomed to working with large datasets.
Despite the worldwide chaos, UAE national airline Etihad has managed to generate productivity gains and cost savings from insights using datascience. Etihad began its datascience journey with the Cloudera Data Platform and moved its data to the cloud to set up a datalake. Talal Mufti.
In today’s data-driven world , organizations are constantly seeking efficient ways to process and analyze vast amounts of information across datalakes and warehouses. SageMaker Lakehouse gives you the flexibility to access and query your data in-place with all Apache Iceberg compatible tools and engines.
A data management platform (DMP) is a group of tools designed to help organizations collect and manage data from a wide array of sources and to create reports that help explain what is happening in those data streams. Deploying a DMP can be a great way for companies to navigate a business world dominated by data.
Just after launching a focused data management platform for retail customers in March, enterprise data management vendor Informatica has now released two more industry-specific versions of its Intelligent Data Management Cloud (IDMC) — one for financial services, and the other for health and life sciences.
Data tables from IT and other data sources require a large amount of repetitive, manual work to be used in analytics. The data analytics function in large enterprises is generally distributed across departments and roles. Figure 1: Data analytics challenge – distributed teams must deliver value in collaboration.
As one of the world’s largest biopharmaceutical companies, AstraZeneca pushes the boundaries of science to deliver life-changing medicines that create enduring value for patients and society. This initiative alone has generated an explosion in the quantity and complexity of data the company collects, stores, and analyzes for insights. . “We
At Atlanta’s Hartsfield-Jackson International Airport, an IT pilot has led to a wholesale data journey destined to transform operations at the world’s busiest airport, fueled by machine learning and generative AI. He is a very visual person, so our proof of concept collects different data sets and ingests them into our Azure data house.
In today’s data-driven business environment, organizations face the challenge of efficiently preparing and transforming large amounts of data for analytics and datascience purposes. Businesses need to build data warehouses and datalakes based on operational data.
The Salesforce Trust Intelligence Platform (TIP) log platform team is responsible for data pipeline and datalake infrastructure, providing log ingestion, normalization, persistence, search, and detection capability to ensure Salesforce is safe from threat actors. This is the bronze layer of the TIP datalake.
If you can’t make sense of your business data, you’re effectively flying blind. Insights hidden in your data are essential for optimizing business operations, finetuning your customer experience, and developing new products — or new lines of business, like predictive maintenance. Azure Data Factory.
While many organizations understand the business need for a data and analytics cloud platform , few can quickly modernize their legacy data warehouse due to a lack of skills, resources, and data literacy. One modern data platform solution that provides simplicity and flexibility to grow is Snowflake’s data cloud and platform.
Cloudera customers run some of the biggest datalakes on earth. These lakes power mission critical large scale data analytics, business intelligence (BI), and machine learning use cases, including enterprise data warehouses. On data warehouses and datalakes. Iterations of the lakehouse.
Cloudera customers run some of the biggest datalakes on earth. These lakes power mission critical large scale data analytics, business intelligence (BI), and machine learning use cases, including enterprise data warehouses. On data warehouses and datalakes. Iterations of the lakehouse.
Enterprise business intelligence (BI) continues to be the last mile to insights-driven business (IDB) capabilities. No matter what technology foundation you’re using – a datalake, a data warehouse, data fabric, data mesh, etc. The BI market has […]
In today’s data-driven world, organizations face unprecedented challenges in managing and extracting valuable insights from their ever-expanding data ecosystems. As the number of data assets and users grow, the traditional approaches to data management and governance are no longer sufficient.
During the first-ever virtual broadcast of our annual Data Impact Awards (DIA) ceremony, we had the great pleasure of announcing this year’s finalists and winners. In fact, each of the 29 finalists represented organizations running cutting-edge use cases that showcase a winning enterprise data cloud strategy. Data Champions .
Since 2015, the Cloudera DataFlow team has been helping the largest enterprise organizations in the world adopt Apache NiFi as their enterprise standard data movement tool. This need has generated a market opportunity for a universal data distribution service. Why does every organization need it when using a modern data stack?
For those in the data world, this post provides a curated guide for all analytics sessions that you can use to quickly schedule and build your itinerary. A shapeshifting guardian and protector of data like Data Lynx? Or a digitally clairvoyant master of data insights like Cloud Sight?
Data management platform definition A data management platform (DMP) is a suite of tools that helps organizations to collect and manage data from a wide array of first-, second-, and third-party sources and to create reports and build customer profiles as part of targeted personalization campaigns.
DataRobot on Azure accelerates the machine learning lifecycle with advanced capabilities for rapid experimentation across new data sources and multiple problem types. This generates reliable business insights and sustains AI-driven value across the enterprise.
Modak, a leading provider of modern data engineering solutions, is now a certified solution partner with Cloudera. Customers can now seamlessly automate migration to Cloudera’s Hybrid Data Platform — Cloudera Data Platform (CDP) to dynamically auto-scale cloud services with Cloudera Data Engineering (CDE) integration with Modak Nabu.
The partners say they will create the future of digital manufacturing by leveraging the industrial internet of things (IIoT), digital twin , data, and AI to bring products to consumers faster and increase customer satisfaction, all while improving productivity and reducing costs. Data and AI as digital fundamentals.
Data Lifecycle Management: The Key to AI-Driven Innovation. The hard part is to turn aspiration into reality by creating an organization that is truly data-driven. That way, the data can continue generating actionable insights. . Rethinking the Data Lifecycle. technologies.
The tools include sophisticated pipelines for gathering data from across the enterprise, add layers of statistical analysis and machine learning to make projections about the future, and distill these insights into useful summaries so that business users can act on them. Visual IDE for data pipelines; RPA for rote tasks. Highlights.
Data governance is a key enabler for teams adopting a data-driven culture and operational model to drive innovation with data. Amazon DataZone allows you to simply and securely govern end-to-end data assets stored in your Amazon Redshift data warehouses or datalakes cataloged with the AWS Glue data catalog.
Recently, Cloudera, alongside OCBC, were named winners in the“ Best Big Data and Analytics Infrastructure Implementation ” category at The Asian Banker’s Financial Technology Innovation Awards 2024. While these are great proof points to demonstrate how business value can be driven by AI/ML, this was only made possible with trusted data.
In today’s data-driven world, the ability to seamlessly integrate and utilize diverse data sources is critical for gaining actionable insights and driving innovation. Use case Consider a large ecommerce company that relies heavily on data-driven insights to optimize its operations, marketing strategies, and customer experiences.
Since 2015, the Cloudera DataFlow team has been helping the largest enterprise organizations in the world adopt Apache NiFi as their enterprise standard data movement tool. This need has generated a market opportunity for a universal data distribution service. Why does every organization need it when using a modern data stack?
When global technology company Lenovo started utilizing data analytics, they helped identify a new market niche for its gaming laptops, and powered remote diagnostics so their customers got the most from their servers and other devices.
But the tools that data scientists use to create these proofs of concept often don’t translate well into production systems. As a result, it can take more than nine months on average to deploy an AI or ML solution, according to IDC data. “We And the data pipeline management functionality is also critical to operationalizing AI. “If
The magic behind Uber’s data-driven success Uber, the ride-hailing giant, is a household name worldwide. But what most people don’t realize is that behind the scenes, Uber is not just a transportation service; it’s a data and analytics powerhouse. Consider the magnitude of Uber’s footprint.
But the tools that data scientists use to create these proofs of concept often don’t translate well into production systems. As a result, it can take more than nine months on average to deploy an AI or ML solution, according to IDC data. “We And the data pipeline management functionality is also critical to operationalizing AI. “If
Data is the fuel that drives government, enables transparency, and powers citizen services. That should be easy, but when agencies don’t share data or applications, they don’t have a unified view of people. Legacy data sharing involves proliferating copies of data, creating data management, and security challenges.
In this post, we discuss how Amazon Redshift spatial index functions such as Hexagonal hierarchical geospatial indexing system (or H3) can be used to represent spatial data using H3 indexing for fast spatial lookups at scale. Navigating the vast landscape of data-driven insights has always been an exciting endeavor.
Artificial intelligence (AI) is now at the forefront of how enterprises work with data to help reinvent operations, improve customer experiences, and maintain a competitive advantage. It’s no longer a nice-to-have, but an integral part of a successful data strategy. Why does AI need an open data lakehouse architecture?
It’s been one decade since the “ Big Data Era ” began (and to much acclaim!). Analysts asked, What if we could manage massive volumes and varieties of data? Yet the question remains: How much value have organizations derived from big data? Big Data as an Enabler of Digital Transformation.
With this first article of the two-part series on data product strategies, I am presenting some of the emerging themes in data product development and how they inform the prerequisites and foundational capabilities of an Enterprise data platform that would serve as the backbone for developing successful data product strategies.
Each year, the Cloudera Data Impact Awards recognize organizations that have accomplished amazing things with innovative data solutions. . From among the many submissions, two organizations stood out for the way they used data to respond to these challenges with solutions that put people first: Bank Madiri and United Overseas Bank. .
Making the most of enterprise data is a top concern for IT leaders today. With organizations seeking to become more data-driven with business decisions, IT leaders must devise data strategies gear toward creating value from data no matter where — or in what form — it resides.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content