Remove Data Lake Remove Data Science Remove Data Transformation
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

IoT 111
article thumbnail

Data transformation takes flight at Atlanta’s Hartsfield-Jackson airport

CIO Business Intelligence

The original proof of concept was to have one data repository ingesting data from 11 sources, including flat files and data stored via APIs on premises and in the cloud, Pruitt says. There are a lot of variables that determine what should go into the data lake and what will probably stay on premise,” Pruitt says.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Similarly, it would be pointless to pretend that a data-intensive application resembles a run-off-the-mill microservice which can be built with the usual software toolchain consisting of, say, GitHub, Docker, and Kubernetes. Adapted from the book Effective Data Science Infrastructure. Data Science Layers.

IT 364
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. Maintaining lists of possible values for the columns requires continuous updates.

Metadata 105
article thumbnail

How to modernize data lakes with a data lakehouse architecture

IBM Big Data Hub

Data Lakes have been around for well over a decade now, supporting the analytic operations of some of the largest world corporations. Such data volumes are not easy to move, migrate or modernize. The challenges of a monolithic data lake architecture Data lakes are, at a high level, single repositories of data at scale.

article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

The recent announcement of the Microsoft Intelligent Data Platform makes that more obvious, though analytics is only one part of that new brand. Azure Data Factory. Azure Data Lake Analytics. Data warehouses are designed for questions you already know you want to ask about your data, again and again.

Data Lake 116
article thumbnail

At AstraZeneca, data and AI are more than game changers – they are life changers

CIO Business Intelligence

As one of the world’s largest biopharmaceutical companies, AstraZeneca pushes the boundaries of science to deliver life-changing medicines that create enduring value for patients and society. Before AI Bench, every data science project was like a separate IT project. Four ways to improve data-driven business transformation .