Remove Data Lake Remove Data Transformation Remove Data Warehouse
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. This feature reduces the amount of data scanned by Athena, resulting in faster query performance and lower costs.

article thumbnail

Perform upserts in a data lake using Amazon Athena and Apache Iceberg

AWS Big Data

Amazon Athena supports the MERGE command on Apache Iceberg tables, which allows you to perform inserts, updates, and deletes in your data lake at scale using familiar SQL statements that are compliant with ACID (Atomic, Consistent, Isolated, Durable).

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Migrate Amazon Redshift from DC2 to RA3 to accommodate increasing data volumes and analytics demands

AWS Big Data

These processes retrieve data from around 90 different data sources, resulting in updating roughly 2,000 tables in the data warehouse and 3,000 external tables in Parquet format, accessed through Amazon Redshift Spectrum and a data lake on Amazon Simple Storage Service (Amazon S3). We started with 115 dc2.large

Data Lake 101
article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

But the features in Power BI Premium are now more powerful than the functionality in Azure Analysis Services, so while the service isn’t going away, Microsoft will offer an automated migration tool in the second half of this year for customers who want to move their data models into Power BI instead. Azure Data Factory.

Data Lake 116
article thumbnail

How GamesKraft uses Amazon Redshift data sharing to support growing analytics workloads

AWS Big Data

Amazon Redshift is a fully managed data warehousing service that offers both provisioned and serverless options, making it more efficient to run and scale analytics without having to manage your data warehouse. These upstream data sources constitute the data producer components.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

Introducing Amazon Q data integration in AWS Glue

AWS Big Data

Amazon Q Developer can now generate complex data integration jobs with multiple sources, destinations, and data transformations. Generated jobs can use a variety of data transformations, including filter, project, union, join, and custom user-supplied SQL.