Remove Data Lake Remove Data Transformation Remove Machine Learning
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

The following requirements were essential to decide for adopting a modern data mesh architecture: Domain-oriented ownership and data-as-a-product : EUROGATE aims to: Enable scalable and straightforward data sharing across organizational boundaries. Eliminate centralized bottlenecks and complex data pipelines.

IoT 111
article thumbnail

Data transformation takes flight at Atlanta’s Hartsfield-Jackson airport

CIO Business Intelligence

At Atlanta’s Hartsfield-Jackson International Airport, an IT pilot has led to a wholesale data journey destined to transform operations at the world’s busiest airport, fueled by machine learning and generative AI. Data integrity presented a major challenge for the team, as there were many instances of duplicate data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Monitor data pipelines in a serverless data lake

AWS Big Data

The combination of a data lake in a serverless paradigm brings significant cost and performance benefits. By monitoring application logs, you can gain insights into job execution, troubleshoot issues promptly to ensure the overall health and reliability of data pipelines.

article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.

article thumbnail

Empower your Jira data in a data lake with Amazon AppFlow and AWS Glue

AWS Big Data

Although Jira Cloud provides reporting capability, loading this data into a data lake will facilitate enrichment with other business data, as well as support the use of business intelligence (BI) tools and artificial intelligence (AI) and machine learning (ML) applications. Choose Update.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Much has been written about struggles of deploying machine learning projects to production. As with many burgeoning fields and disciplines, we don’t yet have a shared canonical infrastructure stack or best practices for developing and deploying data-intensive applications. However, the concept is quite abstract.

IT 364
article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

Taking the broadest possible interpretation of data analytics , Azure offers more than a dozen services — and that’s before you include Power BI, with its AI-powered analysis and new datamart option , or governance-oriented approaches such as Microsoft Purview. Azure Data Factory. Azure Data Lake Analytics.

Data Lake 116