Remove Data Lake Remove Data Transformation Remove Measurement
article thumbnail

Monitor data pipelines in a serverless data lake

AWS Big Data

The combination of a data lake in a serverless paradigm brings significant cost and performance benefits. By monitoring application logs, you can gain insights into job execution, troubleshoot issues promptly to ensure the overall health and reliability of data pipelines.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

cycle_end"', "sagemakedatalakeenvironment_sub_db", ctas_approach=False) A similar approach is used to connect to shared data from Amazon Redshift, which is also shared using Amazon DataZone. With a unified catalog, enhanced analytics capabilities, and efficient data transformation processes, were laying the groundwork for future growth.

IoT 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

From reactive fixes to embedded data quality Vipin Jain Breaking free from recurring data issues requires more than cleanup sprints it demands an enterprise-wide shift toward proactive, intentional design. Data quality must be embedded into how data is structured, governed, measured and operationalized.

article thumbnail

How HR&A uses Amazon Redshift spatial analytics on Amazon Redshift Serverless to measure digital equity in states across the US

AWS Big Data

For files with known structures, a Redshift stored procedure is used, which takes the file location and table name as parameters and runs a COPY command to load the raw data into corresponding Redshift tables. He has worked on building and tuning data warehouse and data lake solutions for over 15 years.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

ML use cases rarely dictate the master data management solution, so the ML stack needs to integrate with existing data warehouses. The iteration cycles should be measured in hours or days, not in months. There’s an emerging space of ML-focused feature stores such as Tecton or labeling solutions like Scale and Snorkel.

IT 364
article thumbnail

How GamesKraft uses Amazon Redshift data sharing to support growing analytics workloads

AWS Big Data

Amazon Redshift is a fully managed data warehousing service that offers both provisioned and serverless options, making it more efficient to run and scale analytics without having to manage your data warehouse. Additionally, data is extracted from vendor APIs that includes data related to product, marketing, and customer experience.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. This includes the ETL processes that capture source data, the functional refinement and creation of data products, the aggregation for business metrics, and the consumption from analytics, business intelligence (BI), and ML.