Remove Data Lake Remove Data Transformation Remove Modeling
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Scheduling and automation – dbt Cloud comes with a job scheduler, allowing you to automate the execution of dbt models.

article thumbnail

Bridging the gap between mainframe data and hybrid cloud environments

CIO Business Intelligence

Data professionals need to access and work with this information for businesses to run efficiently, and to make strategic forecasting decisions through AI-powered data models. Without integrating mainframe data, it is likely that AI models and analytics initiatives will have blind spots.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data transformation takes flight at Atlanta’s Hartsfield-Jackson airport

CIO Business Intelligence

The original proof of concept was to have one data repository ingesting data from 11 sources, including flat files and data stored via APIs on premises and in the cloud, Pruitt says. There are a lot of variables that determine what should go into the data lake and what will probably stay on premise,” Pruitt says.

article thumbnail

Texas Rangers data transformation modernizes stadium operations

CIO Business Intelligence

She decided to bring Resultant in to assist, starting with the firm’s strategic data assessment (SDA) framework, which evaluates a client’s data challenges in terms of people and processes, data models and structures, data architecture and platforms, visual analytics and reporting, and advanced analytics.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Let’s start by considering the job of a non-ML software engineer: writing traditional software deals with well-defined, narrowly-scoped inputs, which the engineer can exhaustively and cleanly model in the code. Not only is data larger, but models—deep learning models in particular—are much larger than before.

IT 364
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In addition to real-time analytics and visualization, the data needs to be shared for long-term data analytics and machine learning applications. To achieve this, EUROGATE designed an architecture that uses Amazon DataZone to publish specific digital twin data sets, enabling access to them with SageMaker in a separate AWS account.

IoT 100
article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.