Remove Data Lake Remove Deep Learning Remove Machine Learning
article thumbnail

Rapidminer Platform Supports Entire Data Science Lifecycle

David Menninger's Analyst Perspectives

Rapidminer is a visual enterprise data science platform that includes data extraction, data mining, deep learning, artificial intelligence and machine learning (AI/ML) and predictive analytics. Rapidminer Studio is its visual workflow designer for the creation of predictive models.

article thumbnail

Understanding the Differences Between Data Lakes and Data Warehouses

Smart Data Collective

Data lakes and data warehouses are probably the two most widely used structures for storing data. Data Warehouses and Data Lakes in a Nutshell. A data warehouse is used as a central storage space for large amounts of structured data coming from various sources. Data Type and Processing.

Data Lake 140
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

NVIDIA RAPIDS in Cloudera Machine Learning

Cloudera

In the previous blog post in this series, we walked through the steps for leveraging Deep Learning in your Cloudera Machine Learning (CML) projects. As a machine learning problem, it is a classification task with tabular data, a perfect fit for RAPIDS. Data Ingestion. Introduction.

article thumbnail

Interview with: Sankar Narayanan, Chief Practice Officer at Fractal Analytics

Corinium

Some of the work is very foundational, such as building an enterprise data lake and migrating it to the cloud, which enables other more direct value-added activities such as self-service. Newer methods can work with large amounts of data and are able to unearth latent interactions.

Insurance 250
article thumbnail

Azure Data Sources for Data Science and Machine Learning

Jen Stirrup

Azure allows you to protect your enterprise data assets, using Azure Active Directory and setting up your virtual network. Other technologies, such as Azure Data Factory, can help process large amounts of data around in the cloud. That includes very hot data sources such a real-time processing. Azure Data Lake Store.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Much has been written about struggles of deploying machine learning projects to production. As with many burgeoning fields and disciplines, we don’t yet have a shared canonical infrastructure stack or best practices for developing and deploying data-intensive applications. However, the concept is quite abstract. Compute.

IT 364
article thumbnail

Of Muffins and Machine Learning Models

Cloudera

In this example, the Machine Learning (ML) model struggles to differentiate between a chihuahua and a muffin. We will learn what it is, why it is important and how Cloudera Machine Learning (CML) is helping organisations tackle this challenge as part of the broader objective of achieving Ethical AI.