Remove Data Lake Remove Document Remove Metadata
article thumbnail

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

AWS Big Data

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake ( Apache Iceberg ) using AWS Glue. format(add_column)).select("DATA_TYPE").toPandas().iterrows())[0]

Data Lake 105
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. Table metadata is fetched from AWS Glue. The generated Athena SQL query is run.

Metadata 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Manage concurrent write conflicts in Apache Iceberg on the AWS Glue Data Catalog

AWS Big Data

In modern data architectures, Apache Iceberg has emerged as a popular table format for data lakes, offering key features including ACID transactions and concurrent write support. However, commits can still fail if the latest metadata is updated after the base metadata version is established.

Snapshot 137
article thumbnail

Expand data access through Apache Iceberg using Delta Lake UniForm on AWS

AWS Big Data

Under the hood, UniForm generates Iceberg metadata files (including metadata and manifest files) that are required for Iceberg clients to access the underlying data files in Delta Lake tables. Both Delta Lake and Iceberg metadata files reference the same data files. in Delta Lake public document.

Metadata 122
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 126
article thumbnail

Multicloud data lake analytics with Amazon Athena

AWS Big Data

Many organizations operate data lakes spanning multiple cloud data stores. In these cases, you may want an integrated query layer to seamlessly run analytical queries across these diverse cloud stores and streamline your data analytics processes. The AWS Glue Data Catalog holds the metadata for Amazon S3 and GCS data.

Data Lake 130
article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

Organizations are collecting and storing vast amounts of structured and unstructured data like reports, whitepapers, and research documents. By consolidating this information, analysts can discover and integrate data from across the organization, creating valuable data products based on a unified dataset.

Data Lake 115