Remove Data Lake Remove Document Remove Unstructured Data
article thumbnail

Enrich your serverless data lake with Amazon Bedrock

AWS Big Data

Organizations are collecting and storing vast amounts of structured and unstructured data like reports, whitepapers, and research documents. By consolidating this information, analysts can discover and integrate data from across the organization, creating valuable data products based on a unified dataset.

article thumbnail

Unstructured data management and governance using AWS AI/ML and analytics services

AWS Big Data

Unstructured data is information that doesn’t conform to a predefined schema or isn’t organized according to a preset data model. Unstructured information may have a little or a lot of structure but in ways that are unexpected or inconsistent. Text, images, audio, and videos are common examples of unstructured data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Differences Between Data Warehouses and Data Lakes

Sisense

Instead, businesses are increasingly turning to data lakes to store massive amounts of unstructured data. Analytics from your cloud data sources are key to transforming your business, but the reality of how most companies use them lags behind expectations. The rise of data warehouses and data lakes.

article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 119
article thumbnail

Understanding Structured and Unstructured Data

Sisense

Different types of information are more suited to being stored in a structured or unstructured format. Read on to explore more about structured vs unstructured data, why the difference between structured and unstructured data matters, and how cloud data warehouses deal with them both. Unstructured data.

article thumbnail

Data Modeling 301 for the cloud: data lake and NoSQL data modeling and design

erwin

For NoSQL, data lakes, and data lake houses—data modeling of both structured and unstructured data is somewhat novel and thorny. This blog is an introduction to some advanced NoSQL and data lake database design techniques (while avoiding common pitfalls) is noteworthy. Data Modeling.

article thumbnail

Data governance in the age of generative AI

AWS Big Data

Data governance is a critical building block across all these approaches, and we see two emerging areas of focus. First, many LLM use cases rely on enterprise knowledge that needs to be drawn from unstructured data such as documents, transcripts, and images, in addition to structured data from data warehouses.