Remove Data Lake Remove Download Remove Snapshot
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data. Eventually, transactional data lakes emerged to add transactional consistency and performance of a data warehouse to the data lake.

Metadata 105
article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure.

Data Lake 137
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 122
article thumbnail

Simplify operational data processing in data lakes using AWS Glue and Apache Hudi

AWS Big Data

A modern data architecture is an evolutionary architecture pattern designed to integrate a data lake, data warehouse, and purpose-built stores with a unified governance model. The company wanted the ability to continue processing operational data in the secondary Region in the rare event of primary Region failure.

Data Lake 111
article thumbnail

Implement slowly changing dimensions in a data lake using AWS Glue and Delta

AWS Big Data

As organizations across the globe are modernizing their data platforms with data lakes on Amazon Simple Storage Service (Amazon S3), handling SCDs in data lakes can be challenging.

Data Lake 101
article thumbnail

Use Amazon Athena with Spark SQL for your open-source transactional table formats

AWS Big Data

AWS-powered data lakes, supported by the unmatched availability of Amazon Simple Storage Service (Amazon S3), can handle the scale, agility, and flexibility required to combine different data and analytics approaches. For more information, refer to the Delete Object permissions section in Amazon S3 actions.

Snapshot 126
article thumbnail

Implement historical record lookup and Slowly Changing Dimensions Type-2 using Apache Iceberg

AWS Big Data

Anytime when you need SCD Type-2 snapshot of your Iceberg table, you can create the corresponding representation. This approach combines the power of Icebergs efficient data management with the historical tracking capabilities of SCD Type-2. Upload the two downloaded JAR files on s3:// /jars/ from the S3 console. runtime Jar.