Remove Data Lake Remove Interactive Remove OLAP
article thumbnail

Unleashing the power of Presto: The Uber case study

IBM Big Data Hub

Presto is an open source distributed SQL query engine for data analytics and the data lakehouse, designed for running interactive analytic queries against datasets of all sizes, from gigabytes to petabytes. Uber understood that digital superiority required the capture of all their transactional data, not just a sampling.

OLAP 86
article thumbnail

Data Modeling 301 for the cloud: data lake and NoSQL data modeling and design

erwin

For NoSQL, data lakes, and data lake houses—data modeling of both structured and unstructured data is somewhat novel and thorny. This blog is an introduction to some advanced NoSQL and data lake database design techniques (while avoiding common pitfalls) is noteworthy. Data Modeling.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

A key pillar of AWS’s modern data strategy is the use of purpose-built data stores for specific use cases to achieve performance, cost, and scale. Deriving business insights by identifying year-on-year sales growth is an example of an online analytical processing (OLAP) query. To house our data, we need to define a data model.

article thumbnail

TIBCO JasperSoft for BI and Reporting

BizAcuity

TIBCO Jaspersoft offers a complete BI suite that includes reporting, online analytical processing (OLAP), visual analytics , and data integration. The web-scale platform enables users to share interactive dashboards and data from a single page with individuals across the enterprise. Online Analytical Processing (OLAP).

article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

A data hub contains data at multiple levels of granularity and is often not integrated. It differs from a data lake by offering data that is pre-validated and standardized, allowing for simpler consumption by users. Data hubs and data lakes can coexist in an organization, complementing each other.

article thumbnail

Unlocking Data Storage: The Traditional Data Warehouse vs. Cloud Data Warehouse

Sisense

While the architecture of traditional data warehouses and cloud data warehouses does differ, the ways in which data professionals interact with them (via SQL or SQL-like languages) is roughly the same. The primary differentiator is the data workload they serve.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

The data warehouse is highly business critical with minimal allowable downtime. We can determine the following are needed: An open data format ingestion architecture processing the source dataset and refining the data in the S3 data lake. Vijay Bagur is a Sr. Technical Account Manager.