Remove Data Lake Remove IoT Remove Structured Data
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Their terminal operations rely heavily on seamless data flows and the management of vast volumes of data. Recently, EUROGATE has developed a digital twin for its container terminal Hamburg (CTH), generating millions of data points every second from Internet of Things (IoT)devices attached to its container handling equipment (CHE).

IoT 111
article thumbnail

Using Artificial Intelligence to Make Sense of IoT Data

BizAcuity

IoT is basically an exchange of data or information in a connected or interconnected environment. As IoT devices generate large volumes of data, AI is functionally necessary to make sense of this data. Data is only useful when it is actionable for which it needs to be supplemented with context and creativity.

IoT 56
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

A data hub contains data at multiple levels of granularity and is often not integrated. It differs from a data lake by offering data that is pre-validated and standardized, allowing for simpler consumption by users. Data hubs and data lakes can coexist in an organization, complementing each other.

article thumbnail

Building Better Data Models to Unlock Next-Level Intelligence

Sisense

The reasons for this are simple: Before you can start analyzing data, huge datasets like data lakes must be modeled or transformed to be usable. According to a recent survey conducted by IDC , 43% of respondents were drawing intelligence from 10 to 30 data sources in 2020, with a jump to 64% in 2021!

article thumbnail

How Cloudera Data Flow Enables Successful Data Mesh Architectures

Cloudera

Those decentralization efforts appeared under different monikers through time, e.g., data marts versus data warehousing implementations (a popular architectural debate in the era of structured data) then enterprise-wide data lakes versus smaller, typically BU-Specific, “data ponds”.

Metadata 124
article thumbnail

Data platform trinity: Competitive or complementary?

IBM Big Data Hub

In another decade, the internet and mobile started the generate data of unforeseen volume, variety and velocity. It required a different data platform solution. Hence, Data Lake emerged, which handles unstructured and structured data with huge volume. Data fabric and data mesh as concepts have overlaps.

article thumbnail

Big Data Fabric Weaves Together Automation, Scalability, and Intelligence

Cloudera

Today’s data landscape is characterized by exponentially increasing volumes of data, comprising a variety of structured, unstructured, and semi-structured data types originating from an expanding number of disparate data sources located on-premises, in the cloud, and at the edge.