Remove Data Lake Remove Machine Learning Remove Testing
article thumbnail

Incremental refresh for Amazon Redshift materialized views on data lake tables

AWS Big Data

Amazon Redshift is a fast, fully managed cloud data warehouse that makes it cost-effective to analyze your data using standard SQL and business intelligence tools. Customers use data lake tables to achieve cost effective storage and interoperability with other tools. The sample files are ‘|’ delimited text files.

article thumbnail

5 things on our data and AI radar for 2021

O'Reilly on Data

MLOps attempts to bridge the gap between Machine Learning (ML) applications and the CI/CD pipelines that have become standard practice. The Time Is Now to Adopt Responsible Machine Learning. Data use is no longer a “wild west” in which anything goes; there are legal and reputational consequences for using data improperly.

Data Lake 362
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

NVIDIA RAPIDS in Cloudera Machine Learning

Cloudera

In the previous blog post in this series, we walked through the steps for leveraging Deep Learning in your Cloudera Machine Learning (CML) projects. As a machine learning problem, it is a classification task with tabular data, a perfect fit for RAPIDS. Data Ingestion. Ingest Data. Write Data.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Much has been written about struggles of deploying machine learning projects to production. As with many burgeoning fields and disciplines, we don’t yet have a shared canonical infrastructure stack or best practices for developing and deploying data-intensive applications. An Overarching Concern: Correctness and Testing.

IT 364
article thumbnail

Eight Top DataOps Trends for 2022

DataKitchen

In 2022, data organizations will institute robust automated processes around their AI systems to make them more accountable to stakeholders. Model developers will test for AI bias as part of their pre-deployment testing. Quality test suites will enforce “equity,” like any other performance metric.

Testing 245
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data. Eventually, transactional data lakes emerged to add transactional consistency and performance of a data warehouse to the data lake.

article thumbnail

Using AWS AppSync and AWS Lake Formation to access a secure data lake through a GraphQL API

AWS Big Data

Data lakes have been gaining popularity for storing vast amounts of data from diverse sources in a scalable and cost-effective way. As the number of data consumers grows, data lake administrators often need to implement fine-grained access controls for different user profiles.

Data Lake 129