Remove Data Lake Remove Marketing Remove Snapshot
article thumbnail

Build a high-performance quant research platform with Apache Iceberg

AWS Big Data

Iceberg provides time travel and snapshotting capabilities out of the box to manage lookahead bias that could be embedded in the data (such as delayed data delivery). Simplified data corrections and updates Iceberg enhances data management for quants in capital markets through its robust insert, delete, and update capabilities.

Metadata 110
article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

licensed, 100% open-source data table format that helps simplify data processing on large datasets stored in data lakes. Data engineers use Apache Iceberg because it’s fast, efficient, and reliable at any scale and keeps records of how datasets change over time.

Data Lake 113
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 129
article thumbnail

Backtesting index rebalancing arbitrage with Amazon EMR and Apache Iceberg

AWS Big Data

Major market indexes, such as S&P 500, are subject to periodic inclusions and exclusions for reasons beyond the scope of this post (for an example, refer to CoStar Group, Invitation Homes Set to Join S&P 500; Others to Join S&P 100, S&P MidCap 400, and S&P SmallCap 600 ).

Snapshot 101
article thumbnail

Use Amazon Athena with Spark SQL for your open-source transactional table formats

AWS Big Data

AWS-powered data lakes, supported by the unmatched availability of Amazon Simple Storage Service (Amazon S3), can handle the scale, agility, and flexibility required to combine different data and analytics approaches. It will never remove files that are still required by a non-expired snapshot.

Snapshot 121
article thumbnail

Manage your data warehouse cost allocations with Amazon Redshift Serverless tagging

AWS Big Data

Amazon Redshift Serverless makes it simple to run and scale analytics without having to manage your data warehouse infrastructure. Solution overview Let’s say that your company has two departments: marketing and finance. For Filter by resource type , you can filter by Workgroup , Namespace , Snapshot , and Recovery Point.

article thumbnail

How Gupshup built their multi-tenant messaging analytics platform on Amazon Redshift

AWS Big Data

Across verticals, thousands of large and small businesses in emerging markets use Gupshup to build conversational experiences across marketing, sales, and support. It makes it fast, simple, and cost-effective to analyze all your data using standard SQL and your existing business intelligence (BI) tools.

Analytics 118