Remove Data Lake Remove Metadata Remove Publishing
article thumbnail

How Volkswagen streamlined access to data across multiple data lakes using Amazon DataZone – Part 1

AWS Big Data

Over the years, organizations have invested in creating purpose-built, cloud-based data lakes that are siloed from one another. A major challenge is enabling cross-organization discovery and access to data across these multiple data lakes, each built on different technology stacks.

Data Lake 122
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Plug-and-play integration : A seamless, plug-and-play integration between data producers and consumers should facilitate rapid use of new data sets and enable quick proof of concepts, such as in the data science teams. As part of the required data, CHE data is shared using Amazon DataZone.

IoT 101
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How BMW streamlined data access using AWS Lake Formation fine-grained access control

AWS Big Data

To achieve this, they aimed to break down data silos and centralize data from various business units and countries into the BMW Cloud Data Hub (CDH). This led to inefficiencies in data governance and access control. After filter packages have been created and published, they can be requested.

article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.

article thumbnail

Expanding data analysis and visualization options: Amazon DataZone now integrates with Tableau, Power BI, and more

AWS Big Data

Amazon DataZone now launched authentication supports through the Amazon Athena JDBC driver, allowing data users to seamlessly query their subscribed data lake assets via popular business intelligence (BI) and analytics tools like Tableau, Power BI, Excel, SQL Workbench, DBeaver, and more.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unlocking the true value of data often gets impeded by siloed information. Traditional data management—wherein each business unit ingests raw data in separate data lakes or warehouses—hinders visibility and cross-functional analysis. Amazon DataZone natively supports data sharing for Amazon Redshift data assets.

Data Lake 109
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With this new functionality, customers can create up-to-date replicas of their data from applications such as Salesforce, ServiceNow, and Zendesk in an Amazon SageMaker Lakehouse and Amazon Redshift. SageMaker Lakehouse gives you the flexibility to access and query your data in-place with all Apache Iceberg compatible tools and engines.