Remove Data Lake Remove Metadata Remove Snapshot
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 112
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.

Data Lake 110
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

licensed, 100% open-source data table format that helps simplify data processing on large datasets stored in data lakes. Data engineers use Apache Iceberg because it’s fast, efficient, and reliable at any scale and keeps records of how datasets change over time.

Data Lake 100
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

When evolving such a partition definition, the data in the table prior to the change is unaffected, as is its metadata. Only data that is written to the table after the evolution is partitioned with the new definition, and the metadata for this new set of data is kept separately.

Data Lake 116
article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

Apache Iceberg is an open table format for very large analytic datasets, which captures metadata information on the state of datasets as they evolve and change over time. Iceberg has become very popular for its support for ACID transactions in data lakes and features like schema and partition evolution, time travel, and rollback.

Data Lake 121
article thumbnail

Improve operational efficiencies of Apache Iceberg tables built on Amazon S3 data lakes

AWS Big Data

When you build your transactional data lake using Apache Iceberg to solve your functional use cases, you need to focus on operational use cases for your S3 data lake to optimize the production environment. availability. parquet") df.sortWithinPartitions("review_date").writeTo("dev.db.amazon_reviews_iceberg").append()

article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 119