Remove Data Lake Remove Metadata Remove Structured Data
article thumbnail

Accelerate Amazon Redshift Data Lake queries with AWS Glue Data Catalog Column Statistics

AWS Big Data

Amazon Redshift enables you to efficiently query and retrieve structured and semi-structured data from open format files in Amazon S3 data lake without having to load the data into Amazon Redshift tables. Amazon Redshift extends SQL capabilities to your data lake, enabling you to run analytical queries.

Data Lake 108
article thumbnail

Understanding the Differences Between Data Lakes and Data Warehouses

Smart Data Collective

Data lakes and data warehouses are probably the two most widely used structures for storing data. Data Warehouses and Data Lakes in a Nutshell. A data warehouse is used as a central storage space for large amounts of structured data coming from various sources.

Data Lake 140
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. Table metadata is fetched from AWS Glue. The generated Athena SQL query is run.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unlocking the true value of data often gets impeded by siloed information. Traditional data management—wherein each business unit ingests raw data in separate data lakes or warehouses—hinders visibility and cross-functional analysis. Amazon DataZone natively supports data sharing for Amazon Redshift data assets.

Data Lake 112
article thumbnail

Data Swamp, Data Lake, Data Lakehouse: What to Know

Alation

Data Swamp vs Data Lake. When you imagine a lake, it’s likely an idyllic image of a tree-ringed body of reflective water amid singing birds and dabbling ducks. I’ll take the lake, thank you very much. Many organizations have built a data lake to solve their data storage, access, and utilization challenges.

article thumbnail

Data Lakes on Cloud & it’s Usage in Healthcare

BizAcuity

Data lakes are centralized repositories that can store all structured and unstructured data at any desired scale. The power of the data lake lies in the fact that it often is a cost-effective way to store data. Deploying Data Lakes in the cloud. Best practices to build a Data Lake.

Data Lake 102
article thumbnail

Data Cataloging in the Data Lake: Alation + Kylo

Alation

By changing the cost structure of collecting data, it increased the volume of data stored in every organization. Additionally, Hadoop removed the requirement to model or structure data when writing to a physical store. You did not have to understand or prepare the data to get it into Hadoop, so people rarely did.