Remove Data Lake Remove Metrics Remove Online Analytical Processing
article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

A data hub contains data at multiple levels of granularity and is often not integrated. It differs from a data lake by offering data that is pre-validated and standardized, allowing for simpler consumption by users. Data hubs and data lakes can coexist in an organization, complementing each other.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

The success criteria are the key performance indicators (KPIs) for each component of the data workflow. This includes the ETL processes that capture source data, the functional refinement and creation of data products, the aggregation for business metrics, and the consumption from analytics, business intelligence (BI), and ML.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a real-time analytics solution with Apache Pinot on AWS

AWS Big Data

Online Analytical Processing (OLAP) is crucial in modern data-driven apps, acting as an abstraction layer connecting raw data to users for efficient analysis. It organizes data into user-friendly structures, aligning with shared business definitions, ensuring users can analyze data with ease despite changes.

OLAP 108
article thumbnail

Unleashing the power of Presto: The Uber case study

IBM Big Data Hub

Uber understood that digital superiority required the capture of all their transactional data, not just a sampling. They stood up a file-based data lake alongside their analytical database. Uber chose Presto for the flexibility it provides with compute separated from data storage.

OLAP 86