This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data warehouses gained momentum back in the early 1990s as companies dealing with growing volumes of data were seeking ways to make analytics faster and more accessible. Onlineanalyticalprocessing (OLAP), which enabled users to quickly and easily view data along different dimensions, was coming of age.
The data warehouse is highly business critical with minimal allowable downtime. This will enable right-sizing the Redshift data warehouse to meet workload demands cost-effectively. This requires a dedicated team of 3–7 members building a serverless datalake for all data sources.
OnlineAnalyticalProcessing (OLAP) is crucial in modern data-driven apps, acting as an abstraction layer connecting raw data to users for efficient analysis. It organizes data into user-friendly structures, aligning with shared business definitions, ensuring users can analyze data with ease despite changes.
As a security measure, Microsoft is closing off direct database access to live Microsoft Dynamics ERP data. The company is pointing customers to several other options, including “BYOD” (which stands for “bring your own database”) and Microsoft Azure datalakes. This leads to the second option, which is a data warehouse.
Uber understood that digital superiority required the capture of all their transactional data, not just a sampling. They stood up a file-based datalake alongside their analytical database. There may be inaccuracy because of sampling, but it allows users to discover new viewpoints within the data.
Like Pinot, StarTree addresses the need for a low-latency, high-concurrency, real-time onlineanalyticalprocessing (OLAP) solution. In addition, StarTree offers a managed experience for real-time and batch Pinot workloads, offering enhanced security, automated data ingestion, tiered storage, and off-heap upserts.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content