article thumbnail

Incremental refresh for Amazon Redshift materialized views on data lake tables

AWS Big Data

Amazon Redshift is a fast, fully managed cloud data warehouse that makes it cost-effective to analyze your data using standard SQL and business intelligence tools. Customers use data lake tables to achieve cost effective storage and interoperability with other tools. 1 from the same S3 bucket and prefix customer.

Data Lake 105
article thumbnail

5 things on our data and AI radar for 2021

O'Reilly on Data

ML presents a problem for CI/CD for several reasons. The data that powers ML applications is as important as code, making version control difficult; outputs are probabilistic rather than deterministic, making testing difficult; training a model is processor intensive and time consuming, making rapid build/deploy cycles difficult.

Data Lake 362
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unleash deeper insights with Amazon Redshift data sharing for data lake tables

AWS Big Data

Over the years, this customer-centric approach has led to the introduction of groundbreaking features such as zero-ETL , data sharing , streaming ingestion , data lake integration , Amazon Redshift ML , Amazon Q generative SQL , and transactional data lake capabilities.

Data Lake 121
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. They are the same.

Data Lake 122
article thumbnail

Data Analytics in the Cloud for Developers and Founders

Speaker: Javier Ramírez, Senior AWS Developer Advocate, AWS

Will the data lake scale when you have twice as much data? Is your data secure? In this session, we address common pitfalls of building data lakes and show how AWS can help you manage data and analytics more efficiently. Javier Ramirez will present: The typical steps for building a data lake.

article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure.

Data Lake 137
article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.