Remove Data Lake Remove Snapshot Remove Testing
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data. Eventually, transactional data lakes emerged to add transactional consistency and performance of a data warehouse to the data lake.

Metadata 105
article thumbnail

Build a high-performance quant research platform with Apache Iceberg

AWS Big Data

Iceberg provides time travel and snapshotting capabilities out of the box to manage lookahead bias that could be embedded in the data (such as delayed data delivery). Simplified data corrections and updates Iceberg enhances data management for quants in capital markets through its robust insert, delete, and update capabilities.

Metadata 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

Iceberg has become very popular for its support for ACID transactions in data lakes and features like schema and partition evolution, time travel, and rollback. and later supports the Apache Iceberg framework for data lakes. The snapshot points to the manifest list. AWS Glue 3.0

Data Lake 137
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.

Data Lake 122
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Many of the tests to check performance and volumes of data scanned have used Athena because it provides a simple to use, fully serverless, cost effective, interface without the need to setup infrastructure. Expire snapshots Each write to an Iceberg table creates a new snapshot , or version, of a table.

Data Lake 126
article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 130
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

We need robust versioning for data, models, code, and preferably even the internal state of applications—think Git on steroids to answer inevitable questions: What changed? The applications must be integrated to the surrounding business systems so ideas can be tested and validated in the real world in a controlled manner. Versioning.

IT 364