This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional datalake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.
Amazon Athena supports the MERGE command on Apache Iceberg tables, which allows you to perform inserts, updates, and deletes in your datalake at scale using familiar SQL statements that are compliant with ACID (Atomic, Consistent, Isolated, Durable). The first task performs an initial copy of the full data into an S3 folder.
Verify all table metadata is stored in the AWS Glue Data Catalog. Consume data with Athena or Amazon EMR Trino for business analysis. Update and delete source records in Amazon RDS for MySQL and validate the reflection of the datalake tables. the Flink table API/SQL can integrate with the AWS Glue Data Catalog.
To optimize their security operations, organizations are adopting modern approaches that combine real-time monitoring with scalable data analytics. They are using datalake architectures and Apache Iceberg to efficiently process large volumes of security data while minimizing operational overhead.
Second, because traditional data warehousing approaches are unable to keep up with the volume, velocity, and variety of data, engineering teams are building datalakes and adopting open data formats such as Parquet and Apache Iceberg to store their data.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content