Remove Data Lake Remove Strategy Remove Structured Data
article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.

article thumbnail

Accelerate Amazon Redshift Data Lake queries with AWS Glue Data Catalog Column Statistics

AWS Big Data

Amazon Redshift enables you to efficiently query and retrieve structured and semi-structured data from open format files in Amazon S3 data lake without having to load the data into Amazon Redshift tables. Amazon Redshift extends SQL capabilities to your data lake, enabling you to run analytical queries.

Data Lake 115
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Complexity Drives Costs: A Look Inside BYOD and Azure Data Lakes

Jet Global

Option 3: Azure Data Lakes. This leads us to Microsoft’s apparent long-term strategy for D365 F&SCM reporting: Azure Data Lakes. Azure Data Lakes are highly complex and designed with a different fundamental purpose in mind than financial and operational reporting. Azure Data Lakes are complicated.

article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

There is an established body of practice around creating, managing, and accessing OLAP data (known as “cubes”). Data Lakes. There has been a lot of talk over the past year or two in the D365F&SCM world about “data lakes.” Traditional databases and data warehouses do not lend themselves to that task.

article thumbnail

Implement slowly changing dimensions in a data lake using AWS Glue and Delta

AWS Big Data

As organizations across the globe are modernizing their data platforms with data lakes on Amazon Simple Storage Service (Amazon S3), handling SCDs in data lakes can be challenging.

Data Lake 101
article thumbnail

Five Strategies to Accelerate Data Product Development

Cloudera

With this first article of the two-part series on data product strategies, I am presenting some of the emerging themes in data product development and how they inform the prerequisites and foundational capabilities of an Enterprise data platform that would serve as the backbone for developing successful data product strategies.

Strategy 119
article thumbnail

Building a Beautiful Data Lakehouse

CIO Business Intelligence

As a result, users can easily find what they need, and organizations avoid the operational and cost burdens of storing unneeded or duplicate data copies. Newer data lakes are highly scalable and can ingest structured and semi-structured data along with unstructured data like text, images, video, and audio.

Data Lake 119