Remove Data Lake Remove Structured Data Remove Visualization
article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.

article thumbnail

Data Lakes on Cloud & it’s Usage in Healthcare

BizAcuity

Data lakes are centralized repositories that can store all structured and unstructured data at any desired scale. The power of the data lake lies in the fact that it often is a cost-effective way to store data. Deploying Data Lakes in the cloud. Best practices to build a Data Lake.

Data Lake 102
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In addition to real-time analytics and visualization, the data needs to be shared for long-term data analytics and machine learning applications. This approach supports both the immediate needs of visualization tools such as Tableau and the long-term demands of digital twin and IoT data analytics.

IoT 111
article thumbnail

Data Visualization and Visual Analytics: Seeing the World of Data

Sisense

In a world increasingly dominated by data, users of all kinds are gathering, managing, visualizing, and analyzing data in a wide variety of ways. One of the downsides of the role that data now plays in the modern business world is that users can be overloaded with jargon and tech-speak, which can be overwhelming.

article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

There is an established body of practice around creating, managing, and accessing OLAP data (known as “cubes”). Data Lakes. There has been a lot of talk over the past year or two in the D365F&SCM world about “data lakes.” Traditional databases and data warehouses do not lend themselves to that task.

article thumbnail

The rise of the data lakehouse: A new era of data value

CIO Business Intelligence

Previously, Walgreens was attempting to perform that task with its data lake but faced two significant obstacles: cost and time. Those challenges are well-known to many organizations as they have sought to obtain analytical knowledge from their vast amounts of data. Lakehouses redeem the failures of some data lakes.

Data Lake 140
article thumbnail

Detect, mask, and redact PII data using AWS Glue before loading into Amazon OpenSearch Service

AWS Big Data

Ingestion: Data lake batch, micro-batch, and streaming Many organizations land their source data into their data lake in various ways, including batch, micro-batch, and streaming jobs. Amazon AppFlow can be used to transfer data from different SaaS applications to a data lake.

Data Lake 119