article thumbnail

Incremental refresh for Amazon Redshift materialized views on data lake tables

AWS Big Data

Amazon Redshift is a fast, fully managed cloud data warehouse that makes it cost-effective to analyze your data using standard SQL and business intelligence tools. Customers use data lake tables to achieve cost effective storage and interoperability with other tools. The sample files are ‘|’ delimited text files.

article thumbnail

Drug Launch Case Study: Amazing Efficiency Using DataOps

DataKitchen

data engineers delivered over 100 lines of code and 1.5 data quality tests every day to support a cast of analysts and customers. They opted for Snowflake, a cloud-native data platform ideal for SQL-based analysis. It is necessary to have more than a data lake and a database.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

5 things on our data and AI radar for 2021

O'Reilly on Data

The data that powers ML applications is as important as code, making version control difficult; outputs are probabilistic rather than deterministic, making testing difficult; training a model is processor intensive and time consuming, making rapid build/deploy cycles difficult. A Wave of Cloud-Native, Distributed Data Frameworks.

Data Lake 362
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Using Athena and the dbt adapter, you can transform raw data in Amazon S3 into well-structured tables suitable for analytics.

article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. They are the same.

Data Lake 115
article thumbnail

Important Considerations When Migrating to a Data Lake

Smart Data Collective

Azure Data Lake Storage Gen2 is based on Azure Blob storage and offers a suite of big data analytics features. If you don’t understand the concept, you might want to check out our previous article on the difference between data lakes and data warehouses. Migrate data, workloads, and applications.

Data Lake 116
article thumbnail

Here’s Why Automation For Data Lakes Could Be Important

Smart Data Collective

Data Lakes are among the most complex and sophisticated data storage and processing facilities we have available to us today as human beings. Analytics Magazine notes that data lakes are among the most useful tools that an enterprise may have at its disposal when aiming to compete with competitors via innovation.

Data Lake 106