This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Crucially, it takes into account the uncertainty inherent in our experiments. Experiments, Parameters and Models At Youtube, the relationships between system parameters and metrics often seem simple — straight-line models sometimes fit our data well. It is a big picture approach, worthy of your consideration.
Instead, we focus on the case where an experimenter has decided to run a full traffic ramp-up experiment and wants to use the data from all of the epochs in the analysis. When there are changing assignment weights and time-based confounders, this complication must be considered either in the analysis or the experimental design.
These circumstances have induced uncertainty across our entire business value chain,” says Venkat Gopalan, chief digital, data and technology officer, Belcorp. “As The R&D laboratories produced large volumes of unstructured data, which were stored in various formats, making it difficult to access and trace.
by AMIR NAJMI Running live experiments on large-scale online services (LSOS) is an important aspect of data science. We must therefore maintain statistical rigor in quantifying experimentaluncertainty. In this post we explore how and why we can be “ data-rich but information-poor ”. And an LSOS is awash in data, right?
Despite a very large number of experimental units, the experiments conducted by LSOS cannot presume statistical significance of all effects they deem practically significant. The result is that experimenters can’t afford to be sloppy about quantifying uncertainty. At Google, we tend to refer to them as slices.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content