Remove Data mining Remove Experimentation Remove Uncertainty
article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

Crucially, it takes into account the uncertainty inherent in our experiments. Experiments, Parameters and Models At Youtube, the relationships between system parameters and metrics often seem simple — straight-line models sometimes fit our data well. It is a big picture approach, worthy of your consideration.

article thumbnail

Belcorp reimagines R&D with AI

CIO Business Intelligence

These circumstances have induced uncertainty across our entire business value chain,” says Venkat Gopalan, chief digital, data and technology officer, Belcorp. “As The R&D laboratories produced large volumes of unstructured data, which were stored in various formats, making it difficult to access and trace.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

Instead, we focus on the case where an experimenter has decided to run a full traffic ramp-up experiment and wants to use the data from all of the epochs in the analysis. When there are changing assignment weights and time-based confounders, this complication must be considered either in the analysis or the experimental design.

article thumbnail

Variance and significance in large-scale online services

The Unofficial Google Data Science Blog

by AMIR NAJMI Running live experiments on large-scale online services (LSOS) is an important aspect of data science. We must therefore maintain statistical rigor in quantifying experimental uncertainty. In this post we explore how and why we can be “ data-rich but information-poor ”. And an LSOS is awash in data, right?

article thumbnail

LSOS experiments: how I learned to stop worrying and love the variability

The Unofficial Google Data Science Blog

Despite a very large number of experimental units, the experiments conducted by LSOS cannot presume statistical significance of all effects they deem practically significant. The result is that experimenters can’t afford to be sloppy about quantifying uncertainty. At Google, we tend to refer to them as slices.