Remove Data Processing Remove Data-driven Remove Metadata
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data. 10) Data Quality Solutions: Key Attributes.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Together, these capabilities enable terminal operators to enhance efficiency and competitiveness in an industry that is increasingly data driven.

IoT 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Demystify data sharing and collaboration patterns on AWS: Choosing the right tool for the job

AWS Big Data

Data is the most significant asset of any organization. However, enterprises often encounter challenges with data silos, insufficient access controls, poor governance, and quality issues. Embracing data as a product is the key to address these challenges and foster a data-driven culture.

Sales 115
article thumbnail

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

AWS Big Data

In today’s rapidly evolving financial landscape, data is the bedrock of innovation, enhancing customer and employee experiences and securing a competitive edge. Like many large financial institutions, ANZ Institutional Division operated with siloed data practices and centralized data management teams.

Metadata 105
article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

The need to integrate diverse data sources has grown exponentially, but there are several common challenges when integrating and analyzing data from multiple sources, services, and applications. First, you need to create and maintain independent connections to the same data source for different services.

article thumbnail

Manage Amazon OpenSearch Service Visualizations, Alerts, and More with GitHub and Jenkins

AWS Big Data

It allows organizations to secure data, perform searches, analyze logs, monitor applications in real time, and explore interactive log analytics. With its scalability, reliability, and ease of use, Amazon OpenSearch Service helps businesses optimize data-driven decisions and improve operational efficiency.

article thumbnail

Implement a custom subscription workflow for unmanaged Amazon S3 assets published with Amazon DataZone

AWS Big Data

Organizational data is often fragmented across multiple lines of business, leading to inconsistent and sometimes duplicate datasets. This fragmentation can delay decision-making and erode trust in available data. This solution enhances governance and simplifies access to unstructured data assets across the organization.