article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

RightData – A self-service suite of applications that help you achieve Data Quality Assurance, Data Integrity Audit and Continuous Data Quality Control with automated validation and reconciliation capabilities. QuerySurge – Continuously detect data issues in your delivery pipelines. Data breaks.

Testing 300
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

Data debt that undermines decision-making In Digital Trailblazer , I share a story of a private company that reported a profitable year to the board, only to return after the holiday to find that data quality issues and calculation mistakes turned it into an unprofitable one.

Risk 140
article thumbnail

How to Deliver Data Quality with Data Governance: Ryan Doupe, CDO of American Fidelity, 9-Step Process

Alation

Several weeks ago (prior to the Omicron wave), I got to attend my first conference in roughly two years: Dataversity’s Data Quality and Information Quality Conference. Ryan Doupe, Chief Data Officer of American Fidelity, held a thought-provoking session that resonated with me. Step 2: Data Definitions.

article thumbnail

Cloud analytics migration: how to exceed expectations

CIO Business Intelligence

They are often unable to handle large, diverse data sets from multiple sources. Another issue is ensuring data quality through cleansing processes to remove errors and standardize formats. Staffing teams with skilled data scientists and AI specialists is difficult, given the severe global shortage of talent.

article thumbnail

Akeneo aims to transform the retail playbook with AI and data consistency

CIO Business Intelligence

In recognising these challenges, Akeneo has developed the Akeneo Product Cloud, a comprehensive solution that delivers Product Information Management (PIM), Syndication, and Supplier Data Manager capabilities. The platform offers tailored solutions for different market segments.

B2B 105
article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

Manish Limaye Pillar #1: Data platform The data platform pillar comprises tools, frameworks and processing and hosting technologies that enable an organization to process large volumes of data, both in batch and streaming modes. Implementing ML capabilities can help find the right thresholds.