Remove Data Processing Remove Data Science Remove Testing
article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Testing and Data Observability. We have also included vendors for the specific use cases of ModelOps, MLOps, DataGovOps and DataSecOps which apply DataOps principles to machine learning, AI, data governance, and data security operations. . Genie — Distributed big data orchestration service by Netflix.

Testing 304
article thumbnail

Top Benefits of Using Docker for Data Science

Smart Data Collective

If you are a Data Scientist or Big Data Engineer, you probably find the Data Science environment configuration painful. If this is your case, you should consider using Docker for your day-to-day Data tasks. In this post, we will see how Docker can create a meaningful impact in your Data Science project.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

The proposed model illustrates the data management practice through five functional pillars: Data platform; data engineering; analytics and reporting; data science and AI; and data governance. The higher the criticality and sensitivity to data downtime, the more engineering and automation are needed.

article thumbnail

15 best data science bootcamps for boosting your career

CIO Business Intelligence

An education in data science can help you land a job as a data analyst , data engineer , data architect , or data scientist. Here are the top 15 data science boot camps to help you launch a career in data science, according to reviews and data collected from Switchup.

article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

Data debt that undermines decision-making In Digital Trailblazer , I share a story of a private company that reported a profitable year to the board, only to return after the holiday to find that data quality issues and calculation mistakes turned it into an unprofitable one.

Risk 140
article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

In addition to newer innovations, the practice borrows from model risk management, traditional model diagnostics, and software testing. Security vulnerabilities : adversarial actors can compromise the confidentiality, integrity, or availability of an ML model or the data associated with the model, creating a host of undesirable outcomes.

article thumbnail

Crawling the internet: data science within a large engineering system

The Unofficial Google Data Science Blog

There are two sets of constraints that make crawl an interesting problem: Each host (a collection of web pages sharing a common URL prefix) imposes an implicit or explicit limit on the rate of crawls Google’s web crawler can request. An estimate of this change rate for each web page would be available to the recrawl logic. The Missing Link!