Remove Data Processing Remove Data Transformation Remove Data Warehouse
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

Your generated jobs can use a variety of data transformations, including filters, projections, unions, joins, and aggregations, giving you the flexibility to handle complex data processing requirements. Next, the merged data is filtered to include only a specific geographic region.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

The applications are hosted in dedicated AWS accounts and require a BI dashboard and reporting services based on Tableau. AWS Database Migration Service (AWS DMS) is used to securely transfer the relevant data to a central Amazon Redshift cluster. AWS DMS tasks are orchestrated using AWS Step Functions.

IoT 111
article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

The currently available choices include: The Amazon Redshift COPY command can load data from Amazon Simple Storage Service (Amazon S3), Amazon EMR , Amazon DynamoDB , or remote hosts over SSH. This native feature of Amazon Redshift uses massive parallel processing (MPP) to load objects directly from data sources into Redshift tables.

IoT 111
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

How smava makes loans transparent and affordable using Amazon Redshift Serverless

AWS Big Data

To speed up the self-service analytics and foster innovation based on data, a solution was needed to provide ways to allow any team to create data products on their own in a decentralized manner. To create and manage the data products, smava uses Amazon Redshift , a cloud data warehouse.

Data Lake 115
article thumbnail

Use AWS Glue to streamline SFTP data processing

AWS Big Data

Access to an SFTP server with permissions to upload and download data. If the SFTP server is hosted on Amazon Elastic Compute Cloud (Amazon EC2) , we recommend that the network communication between the SFTP server and the AWS Glue job happens within the virtual private cloud (VPC) as pictured in the preceding architecture diagram.