Remove Data Processing Remove Data Transformation Remove Information
article thumbnail

CIOs are rethinking how they use public cloud services. Here’s why.

CIO Business Intelligence

Theres a renewed focus on on-premises, on-premises private cloud, or hosted private cloud versus public cloud, especially as data-heavy workloads such as generative AI have started to push cloud spend up astronomically, adds Woo. Id be cautious about going down the path of private cloud hosting or on premises, says Nag.

article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

Your generated jobs can use a variety of data transformations, including filters, projections, unions, joins, and aggregations, giving you the flexibility to handle complex data processing requirements. In this post, we discuss how Amazon Q data integration transforms ETL workflow development.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. In addition to real-time analytics and visualization, the data needs to be shared for long-term data analytics and machine learning applications.

IoT 111
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

Together with price-performance, Amazon Redshift offers capabilities such as serverless architecture, machine learning integration within your data warehouse and secure data sharing across the organization. dbt Cloud is a hosted service that helps data teams productionize dbt deployments. Port: Redshift 5439.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

However, with all good things comes many challenges and businesses often struggle with managing their information in the correct way. Oftentimes, the data being collected and used is incomplete or damaged, leading to many other issues that can considerably harm the company. Enters data quality management.

article thumbnail

10 Examples of How Big Data in Logistics Can Transform The Supply Chain

datapine

To work effectively, big data requires a large amount of high-quality information sources. Where is all of that data going to come from? Proactivity: Another key benefit of big data in the logistics industry is that it encourages informed decision-making and proactivity.

Big Data 275
article thumbnail

Unlock scalable analytics with a secure connectivity pattern in AWS Glue to read from or write to Snowflake

AWS Big Data

The company stores vast amounts of transactional data, customer information, and product catalogs in Snowflake. However, they also generate and collect data from various other sources, such as web logs stored in Amazon S3, social media platforms, and third-party data providers. Choose Save.

Analytics 119