Remove Data Processing Remove Data Transformation Remove Internet of Things
article thumbnail

10 Examples of How Big Data in Logistics Can Transform The Supply Chain

datapine

In an interview with the Wall Street Journal, Matthias Winkenbach , director of MIT’s Megacity Logistics Lab, details how last-mile analytics are yielding useful data. However, big data and the Internet of Things could give delivery drivers and managers a much better idea of how they can reduce costs due to perished goods.

Big Data 275
article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

The currently available choices include: The Amazon Redshift COPY command can load data from Amazon Simple Storage Service (Amazon S3), Amazon EMR , Amazon DynamoDB , or remote hosts over SSH. This native feature of Amazon Redshift uses massive parallel processing (MPP) to load objects directly from data sources into Redshift tables.

IoT 101
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The 10 biggest issues IT faces today

CIO Business Intelligence

According to Evanta’s 2022 CIO Leadership Perspectives study, CIOs’ second top priority within the IT function is around data and analytics, with CIOs seeing advancing organizational use of data as key to reaching enterprise objectives. Angel-Johnson shares that perspective. “I

IT 144
article thumbnail

Gain insights from historical location data using Amazon Location Service and AWS analytics services

AWS Big Data

The solution consists of the following interfaces: IoT or mobile application – A mobile application or an Internet of Things (IoT) device allows the tracking of a company vehicle while it is in use and transmits its current location securely to the data ingestion layer in AWS. The ingestion approach is not in scope of this post.

Analytics 102
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. Data engineers are crucial for schema conversion and data transformation, and DBAs can handle cluster configuration and workload monitoring. Platform architects define a well-architected platform.