Remove Data Processing Remove Data Transformation Remove Unstructured Data
article thumbnail

Addressing the Three Scalability Challenges in Modern Data Platforms

Cloudera

Open source frameworks such as Apache Impala, Apache Hive and Apache Spark offer a highly scalable programming model that is capable of processing massive volumes of structured and unstructured data by means of parallel execution on a large number of commodity computing nodes. . public, private, hybrid cloud)?

article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

To overcome these issues, Orca decided to build a data lake. A data lake is a centralized data repository that enables organizations to store and manage large volumes of structured and unstructured data, eliminating data silos and facilitating advanced analytics and ML on the entire data.

article thumbnail

Hybrid big data analytics with Amazon EMR on AWS Outposts

AWS Big Data

This configuration allows you to augment your sensitive on-premises data with cloud data while making sure all data processing and compute runs on-premises in AWS Outposts Racks. Additionally, Oktank must comply with data residency requirements, making sure that confidential data is stored and processed strictly on premises.