Remove Data Processing Remove Data Warehouse Remove Internet of Things
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Their terminal operations rely heavily on seamless data flows and the management of vast volumes of data. Recently, EUROGATE has developed a digital twin for its container terminal Hamburg (CTH), generating millions of data points every second from Internet of Things (IoT)devices attached to its container handling equipment (CHE).

IoT 111
article thumbnail

Break data silos and stream your CDC data with Amazon Redshift streaming and Amazon MSK

AWS Big Data

A CDC-based approach captures the data changes and makes them available in data warehouses for further analytics in real-time. usually a data warehouse) needs to reflect those changes in near real-time. This post showcases how to use streaming ingestion to bring data to Amazon Redshift.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

The currently available choices include: The Amazon Redshift COPY command can load data from Amazon Simple Storage Service (Amazon S3), Amazon EMR , Amazon DynamoDB , or remote hosts over SSH. This native feature of Amazon Redshift uses massive parallel processing (MPP) to load objects directly from data sources into Redshift tables.

IoT 111
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

Architectural Patterns for real-time analytics using Amazon Kinesis Data Streams, Part 2: AI Applications

AWS Big Data

Now get ready as we embark on the second part of this series, where we focus on the AI applications with Kinesis Data Streams in three scenarios: real-time generative business intelligence (BI), real-time recommendation systems, and Internet of Things (IoT) data streaming and inferencing.

IoT 115
article thumbnail

Quantitative and Qualitative Data: A Vital Combination

Sisense

When these systems connect with external groups — customers, subscribers, shareholders, stakeholders — even more data is generated, collected, and exchanged. The result, as Sisense CEO Amir Orad wrote , is that every company is now a data company. First, data isn’t created in a uniform, consistent format.

article thumbnail

Join a streaming data source with CDC data for real-time serverless data analytics using AWS Glue, AWS DMS, and Amazon DynamoDB

AWS Big Data

Traditional batch ingestion and processing pipelines that involve operations such as data cleaning and joining with reference data are straightforward to create and cost-efficient to maintain. You will also want to apply incremental updates with change data capture (CDC) from the source system to the destination.