Remove Data Processing Remove Data Warehouse Remove IoT
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Their terminal operations rely heavily on seamless data flows and the management of vast volumes of data. Recently, EUROGATE has developed a digital twin for its container terminal Hamburg (CTH), generating millions of data points every second from Internet of Things (IoT)devices attached to its container handling equipment (CHE).

IoT 111
article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

RightData – A self-service suite of applications that help you achieve Data Quality Assurance, Data Integrity Audit and Continuous Data Quality Control with automated validation and reconciliation capabilities. QuerySurge – Continuously detect data issues in your delivery pipelines. Locke DataData science services.

Testing 304
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

The currently available choices include: The Amazon Redshift COPY command can load data from Amazon Simple Storage Service (Amazon S3), Amazon EMR , Amazon DynamoDB , or remote hosts over SSH. This native feature of Amazon Redshift uses massive parallel processing (MPP) to load objects directly from data sources into Redshift tables.

IoT 111
article thumbnail

Architectural Patterns for real-time analytics using Amazon Kinesis Data Streams, Part 2: AI Applications

AWS Big Data

Now get ready as we embark on the second part of this series, where we focus on the AI applications with Kinesis Data Streams in three scenarios: real-time generative business intelligence (BI), real-time recommendation systems, and Internet of Things (IoT) data streaming and inferencing.

IoT 115
article thumbnail

Break data silos and stream your CDC data with Amazon Redshift streaming and Amazon MSK

AWS Big Data

A CDC-based approach captures the data changes and makes them available in data warehouses for further analytics in real-time. usually a data warehouse) needs to reflect those changes in near real-time. This post showcases how to use streaming ingestion to bring data to Amazon Redshift.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

96 Percent of Businesses Can’t Be Wrong: How Hybrid Cloud Came to Dominate the Data Sector

Cloudera

Network operating systems let computers communicate with each other; and data storage grew—a 5MB hard drive was considered limitless in 1983 (when compared to a magnetic drum with memory capacity of 10 kB from the 1960s). The amount of data being collected grew, and the first data warehouses were developed.