Remove Data Processing Remove Data Warehouse Remove Machine Learning
article thumbnail

Oracle Wants to Be the Database for AI

David Menninger's Analyst Perspectives

Oracle recently hosted its annual Database Analyst Summit, sharing the vision and strategy for its data platform. While much of the event was under non-disclosure as product plans and launch schedules are finalized, it still served as a useful recap of the broad portfolio of data platform capabilities that Oracle has to offer.

Data Lake 130
article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

We have also included vendors for the specific use cases of ModelOps, MLOps, DataGovOps and DataSecOps which apply DataOps principles to machine learning, AI, data governance, and data security operations. . Dagster / ElementL — A data orchestrator for machine learning, analytics, and ETL. .

Testing 300
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

The following requirements were essential to decide for adopting a modern data mesh architecture: Domain-oriented ownership and data-as-a-product : EUROGATE aims to: Enable scalable and straightforward data sharing across organizational boundaries. Eliminate centralized bottlenecks and complex data pipelines.

IoT 111
article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

It was not alive because the business knowledge required to turn data into value was confined to individuals minds, Excel sheets or lost in analog signals. We are now deciphering rules from patterns in data, embedding business knowledge into ML models, and soon, AI agents will leverage this data to make decisions on behalf of companies.

article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises.

article thumbnail

How Will The Cloud Impact Data Warehousing Technologies?

Smart Data Collective

Dating back to the 1970s, the data warehousing market emerged when computer scientist Bill Inmon first coined the term ‘data warehouse’. Created as on-premise servers, the early data warehouses were built to perform on just a gigabyte scale. Cloud based solutions are the future of the data warehousing market.