Remove Data Processing Remove Data Warehouse Remove Testing
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Testing and Data Observability. We have also included vendors for the specific use cases of ModelOps, MLOps, DataGovOps and DataSecOps which apply DataOps principles to machine learning, AI, data governance, and data security operations. . Genie — Distributed big data orchestration service by Netflix.

Testing 304
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Accelerate Offloading to Cloudera Data Warehouse (CDW) with Procedural SQL Support

Cloudera

Did you know Cloudera customers, such as SMG and Geisinger , offloaded their legacy DW environment to Cloudera Data Warehouse (CDW) to take advantage of CDW’s modern architecture and best-in-class performance? The Data Warehouse on Cloudera Data Platform provides easy to use self-service and advanced analytics use cases at scale.

article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises. The downside here is over-provisioning.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

Manish Limaye Pillar #1: Data platform The data platform pillar comprises tools, frameworks and processing and hosting technologies that enable an organization to process large volumes of data, both in batch and streaming modes. The choice of vendors should align with the broader cloud or on-premises strategy.

article thumbnail

5 Advantages of Using a Redshift Data Warehouse

Sisense

To extract the maximum value from your data, it needs to be accessible, well-sorted, and easy to manipulate and store. Amazon’s Redshift data warehouse tools offer such a blend of features, but even so, it’s important to understand what it brings to the table before making a decision to integrate the system.

article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

You can now generate data integration jobs for various data sources and destinations, including Amazon Simple Storage Service (Amazon S3) data lakes with popular file formats like CSV, JSON, and Parquet, as well as modern table formats such as Apache Hudi , Delta , and Apache Iceberg.