Remove Data Processing Remove Deep Learning Remove Machine Learning
article thumbnail

Artificial intelligence and machine learning adoption in European enterprise

O'Reilly on Data

In a recent survey , we explored how companies were adjusting to the growing importance of machine learning and analytics, while also preparing for the explosion in the number of data sources. As interest in machine learning (ML) and AI grow, organizations are realizing that model building is but one aspect they need to plan for.

article thumbnail

Recent top-selling books in AI and Machine Learning

Rocket-Powered Data Science

Being Human in the Age of Artificial Intelligence” “An Introduction to Statistical Learning: with Applications in R” (7th printing; 2017 edition). Being Human in the Age of Artificial Intelligence” “An Introduction to Statistical Learning: with Applications in R” (7th printing; 2017 edition).

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

For all the excitement about machine learning (ML), there are serious impediments to its widespread adoption. Security vulnerabilities : adversarial actors can compromise the confidentiality, integrity, or availability of an ML model or the data associated with the model, creating a host of undesirable outcomes.

article thumbnail

Top 14 Must-Read Data Science Books You Need On Your Desk

datapine

This interdisciplinary field of scientific methods, processes, and systems helps people extract knowledge or insights from data in a host of forms, either structured or unstructured, similar to data mining. 2) “Deep Learning” by Ian Goodfellow, Yoshua Bengio and Aaron Courville. click for book source**.

article thumbnail

KDnuggets News, May 18: 5 Free Hosting Platform For Machine Learning Applications; Data Mesh Architecture: Reimagining Data Management

KDnuggets

5 Free Hosting Platform For Machine Learning Applications; Data Mesh Architecture: Reimagining Data Management; Popular Machine Learning Algorithms; Reinforcement Learning for Newbies ; Deep Learning For Compliance Checks: What's New?

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

We have also included vendors for the specific use cases of ModelOps, MLOps, DataGovOps and DataSecOps which apply DataOps principles to machine learning, AI, data governance, and data security operations. . Dagster / ElementL — A data orchestrator for machine learning, analytics, and ETL. . Collaboration and Sharing.

Testing 300
article thumbnail

A Practitioner’s Guide to Deep Learning with Ludwig

Domino Data Lab

New tools are constantly being added to the deep learning ecosystem. For example, there have been multiple promising tools created recently that have Python APIs, are built on top of TensorFlow or PyTorch , and encapsulate deep learning best practices to allow data scientists to speed up research.