Remove Data Processing Remove Experimentation Remove Modeling
article thumbnail

Experimentation and Testing: A Primer

Occam's Razor

This post is a primer on the delightful world of testing and experimentation (A/B, Multivariate, and a new term from me: Experience Testing). Experimentation and testing help us figure out we are wrong, quickly and repeatedly and if you think about it that is a great thing for our customers, and for our employers. Counter claims?

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

But there’s a host of new challenges when it comes to managing AI projects: more unknowns, non-deterministic outcomes, new infrastructures, new processes and new tools. For machine learning systems used in consumer internet companies, models are often continuously retrained many times a day using billions of entirely new input-output pairs.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

DataOps needs a directed graph-based workflow that contains all the data access, integration, model and visualization steps in the data analytic production process. GitHub – A provider of Internet hosting for software development and version control using Git. Azure Repos – Unlimited, cloud-hosted private Git repos. .

Testing 300
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

EUROGATEs data science team aims to create machine learning models that integrate key data sources from various AWS accounts, allowing for training and deployment across different container terminals. The applications are hosted in dedicated AWS accounts and require a BI dashboard and reporting services based on Tableau.

IoT 106
article thumbnail

Your New Cloud for AI May Be Inside a Colo

CIO Business Intelligence

Many companies whose AI model training infrastructure is not proximal to their data lake incur steeper costs as the data sets grow larger and AI models become more complex. The cloud is great for experimentation when data sets are smaller and model complexity is light. Potential headaches of DIY on-prem infrastructure.

article thumbnail

GenAI sticker shock sends CIOs in search of solutions

CIO Business Intelligence

The early bills for generative AI experimentation are coming in, and many CIOs are finding them more hefty than they’d like — some with only themselves to blame. According to IDC’s “ Generative AI Pricing Models: A Strategic Buying Guide ,” the pricing landscape for generative AI is complicated by “interdependencies across the tech stack.”

article thumbnail

Large Language Models and Data Management

Ontotext

I did some research because I wanted to create a basic framework on the intersection between large language models (LLM) and data management. But there are also a host of other issues (and cautions) to take into consideration. LLM is by its very design a language model. The technology is very new and not well understood.